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Galerkin Solution for the Thin Circular Iris
in a TE,,-Mode Circular Waveguide

ROBERT W. SCHARSTEIN, MEMBER, IEEE, AND ARLON T. ADAMS, SENIOR MEMBER, IEEE

Abstract — An integral equation for the transverse electric field in the
aperture of a concentric circular iris in a transverse plane of a circular
waveguide is approximately solved by Galerkin’s method. The aperture
field is represented by a finite sum of normal TE and TM circular
waveguide modes that fit the circular aperture. The numerical convergence
of the Galerkin solution is demonstrated via resultant aperture field
distributions and equivalent shunt susceptance for the case of dominant
TE;-mode excitation. The resultant aperture electric field distribution
closely resembles that of the TE,; aperture mode alone, except for edge
condition behavior at the edge of the iris. A resonant or capacitive iris is
possible over a restricted range of frequencies.

I. INTRODUCTION

HE SPECIFIC APERTURE under consideration is

that of an infinitesimally thin circular iris of inner
radius b in a transverse plane of a circular waveguide of
radius a, as shown in Fig. 1. The circular iris is concentric
with the axis of the circular waveguide. The case of cir-
cularly symmetric excitation (TE,,, TM,, modes) of this
circular iris or the related step change in waveguide diame-
ter problem is considered by many authors, for example
[11-[5]. Marcuvitz [6, p. 243] gives the equivalent shunt
susceptance for TE; excitation of small apertures. Gubskii
et al. [7] formulate the Galerkin method for TE, - and
TM,,,-mode incidence using a basis of weighted Jacobi
polynomials. Unfortunately, their results are given only for
TE,, and TM,, excitation. The use of aperture waveguide
modes as a basis in the Galerkin procedure [8], [9] yields
the same set of linear equations as Wexler’s modal analysis
[10] and as the conservation of complex power technique
of Wade and MacPhie [11]. The Galerkin method also
yields the same equations as the Rayleigh—Ritz method,
but without having to start from an explicit variational
functional [12, p. 448]. In this paper, the effect- of the
entire infinite set of modes in the circular waveguide is
approximated by series summation, in the manner of
[13]-[15]. The relative convergence problem [16], [17] and
less numerical accuracy can potentially arise when the
number of modes in the waveguide region is truncated, as
in the implementations of [9]-[11].
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The unknown in the boundary value problem is the
aperture electric field, from which the waveguide fields are
determined. The Galerkin method is formulated for the
case of the transverse junction between two perfectly con-
ducting cylindrical waveguides of general cross section.
The portion of the junction plane that extends into the
interior (the iris) is taken to be infinitesimally thin. The
formulation is implemented for the TE,; excitation of the
circular iris in a circular waveguide, and several resultant
aperture electric field distributions are given. A family of
design curves for the variation of the equivalent shunt
susceptance as a function of iris size b/a and electrical
size of the circular waveguide ka is also given, where
k=27/A is the wavenumber of the unbounded dielectric
in the waveguide.

II. DERIVATION OF ELECTRIC FIELD
INTEGRAL EQUATION

The portion of each waveguide cross section in the
transverse plane z =0 that does not coincide with the
aperture S is shorted by a perfect electric conductor (Fig.
2). The aperture S is excited by any number of modes
from waveguide (a) on the left (negative z) and is excited
by any number of modes from waveguide (b) on the right
(positive z). The cross sectional areas of the waveguides
are denoted by S, and S,. An iris of finite thickness is
treated as the simultaneous solution of two separated
junctions [18], [19]. Waveguides (a) and (b) can contain
two different, lossy dielectrics.

In the junction plane z =0, the transverse electric and
magnetic fields of regions (a) and (b) are expressed as
infinite summations of the normal transverse vector mode
functions of the corresponding waveguide

E,= Y Ve, (1)
mzl on S,
H,= Y 1,h, ()
m=1
E- Y U, 3)
' ";1 . on S,.
ﬁb_ Z fniln (4)
n=1

In waveguide (a), V,, is the unknown modal voltage, I, is
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Fig. 1. Thin circular 1ris in circular waveguide.
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Fig. 2. Longitudinal view of transverse iris junction between two gen-

eral cylindrical waveguides.

the unknown modal current, e,
mode vector, and #,, is the known magnetic field mode
vector of the mth mode. The corresponding quantities of
waveguide (b) are denoted by the caret (*) and modal
index #. The entire modal spectra of the waveguide fields
are needed at an abrupt discontinuity such as the junction,
and so the entire infinite summations are maintained and
not truncated.

It is convenient to define the inner product between two
transverse vectors 4 and B over the surface 2 as the scalar
integral

(14T,§>2f/j;/i-§*ds ()

where the asterisk denotes complex conjugate. The wave-
guide mode functions are orthonormalized in the sense
that their pairwise inner products are given by

(€, e_k>Sa= <i1m7 ;’k>s”= 8,k

<511’ék>5b: <iln’ﬁk>s,,=6nk' (6)

The electric and magnetic vector mode functions are sim-
ply related by a 90° transverse rotation [6, p. 4]

A

h,=%xe, h,=ixe, (7)

where 7 is th axial unit vector. The usual transmission line
equations for the mth waveguide (a) mode and the nth
waveguide (b) mode are

V, =Vl : (8)
L=y, Ve -y (9)
I};1 - I}ninc + I}nreﬂ (10)
I=—3,[Vjre— 7] (11)

where the left-hand terms are total modal voltage and
current. Equations (8) and (9) relate total modal voltage V,,
and current /,, to the incident and reflected modal volt-
ages V" and V! of waveguide (a) in the reference plane
z =10. The characteristic admittance of the mth mode of

1s the known electric field
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waveguide (a) is denoted by y,,, which completely accounts
for the dielectric in the guide. Equations (10) and (11) give
the corresponding relations of waveguide (b).

The integral equation satisfied by the unknown tangen-
tial electric field in the aperture S is obtained by enforcing
continuity of the tangential magnetic field H across the
aperture,

00 A

Z E nizn on S.

m=1

(12)

Insertion of the electric quantities from (7)—(11) into the
above, taking the vector cross product of — 7 with both
sides, and addition of twice the incident terms to each side
of the resultant equation yields

Z ymeem + Z yA}'lI}neAn
ne=1 n=
o0 i o0 n n
=2 ) y Vg +23 5Vme  onS. (13)
m=1 n=1

Continuity of the tangential electric field is automatically
satisfied since V,, and V, are expressed as functions of the
common unknown aperture electric field in the aperture S:
- & E on S
E,= ) Ve,={ 14
a Z m-m {O On Sa _ S ( )
E on §

aper

xQ
E,= Y Veé,= 15
- Zl {O onS,—S. (15)

The inner product of (14) with the kth waveguide (a)
electric mode vector over the wavegunide (a) cross section is

(16)

The orthogonality of the waveguide mode vectors allows
each waveguide total modal voltage to be calculated sep-
arately:

<Ea»ek>s Z ék>Sa=<Eaper7Ek>S'

Vm = <Eaper’ e_m>S

(17)

V <Eaper7 >S'
Insertion of (17) into (13) yields

Z Ym€ m(p)<Eaper7 m>S+ Z yn n(p)<Eaper’ n>S

m=1

=2 ¥ yre,(p)+2 X 50, (p),  peS. (19)
m =1 n=1
This Fredholm integral equation of the first kind is cast

into standard form
pES

(19)

J G5 8) B () ds' = =22 X H™(5),

where the dyadic Green’s function is

;lym e, (p)ex(p)+ glyn e.(p)ex(p).
k (20)
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Some authors [8], [9] conceptually short the entire aperture
S with a perfect electric conductor and introduce the
equivalent magnetic surface current over S necessary to
bring the total tangential electric field back to its correct
value Eaper. In such cases, the resultant integral equation
with the magnetic surface current as the unknown is
entirely equivalent to (19). The boundary condition is

P X Eaper(r)) =0,

(21)

where # is the outward normal of the boundary curve C of
the aperture S. This boundary condition must be satisfied
according to (14) and (15) if the integral equation (19) is
valid in S.

peC

III. ForMAL GALERKIN SOLUTION OF
INTEGRAL EQUATION

The linear integral operator (19) is

PE o) = 5 520(7) [ [E(7) B

+ X 5.0) [ [e2(5) Epee() d5". (22)
n=1 N
The adjoint operator £¢ satisfies [20, p. 315]
(23)

where A4 and B are elements of the domain of .# and £°,
respectively. Application of this definition and the Hilbert
space inner product (5) gives

<$A_, E>S= <A—’ $a§>s

PE (9= L 332,(0) [ [22(5) Euul7)

m=1
+ 2 978,(5) [ [21(5) B9 5" (29)
n=1

The domains of .# and #“ are identical and are the set
of vector functions Eaper(ﬁ) that are integrable with the
waveguide vector modal functions over the aperture S and
result in convergent series of (22) and (24). Furthermore,
the class of legitimate aperture fields is limited to those
vector functions that satisfy the boundary condition (21).
The Galerkin technique is now applied in the manner of
[8] and [9]. The unknown aperture electric field is ap-
proximated by a linear combination of L independent

basis functions &,(3),
(25)

where the unknowns are the complex aperture voltages 171
Inserting (25) into (18) and taking the inner product over
the aperture S of the residual error with the kth basis
function yields L linear equations. In matrix form these
linear equations are

E, . (p) = ,2 Ve, (p)

(Ve+¥0)V=Ta+ 1" (26)
where the (k, /)th elements of the L X L square aperture

admittance matrices are

[ee]
Y/éll= Z ym<é-m’ék>s<él’ém>s
m=1

(27)
(28)

and the kth elements of the L X1 current excitation
column vectors are

0
kal = Z yAn<én7Ek>S<El7 En>S

n=1

(29)

(30)

Note that Y7 and I are functions only of the geometry,
frequency, and excitation of the left side of the junction,
and similarly for Y2, and I} on the right. This is due to the
inherent separation of the Green’s function (20). The cou-
pling between waveguides (a) and (b) occurs algebraically
as a simple matrix addition, with the solution obtained via
matrix inversion. The element Y, can be thought of as the
mutual admittance between the kth and /th aperture
modes, where the coupling is via the infinite set of wave-
guide (a) modes.

an/ninc< En ’ Ek >S .

[e]
Z ymVn;nc< Em > Ek >S
=1
00
=1

If=2
m

Ir=2%
n

IV. MobpAL Basis

If the aperture has the shape of a familiar waveguide
cross section, then the normal TE (4-type) and TM (e-type)
aperture waveguide modes constitute a candidate basis for
the tangential electric field in the aperture. The transverse
electric fields for the modes are expressed in terms of
scalar potential wave functions [6, p. 4]

TE modes: é"=2xv,¥"

(31)

TM modes: ¢¢ = —v,¥° (32)
which satisfy the boundary conditions
v
P 0  onC (Neumann or hard) (33)
14
¥e¢=0  on C (Dirichlet or soft). (34)

The inner product between the TE, aperture mode and the
TE,, waveguide (a) mode is

@l ems= [ [vo[vrv¥t)a- [ [V ds
(35)

where the scalar potentials satisfy the Helmholtz equation
[+ (&)t =o. (36)

The two-dimensional divergence theorem, the directional
derivative of a scalar, and boundary condition (33) for the
aperture mode on C yield

Clanys=(&0)' [ [ ¥ .

Similarly, the inner product over S of the TM aperture and

(37)
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waveguide modes is
(@ enys = (0,) [ [ iwsmds. (38)

The inner product of the TE, aperture mode and the TM,,
waveguide (a) mode is

@ enys= [ [(vHrxv¥) & (39)

which 1n view of vector identities and Stokes’ theorem
reduces to

(&1 sy = e Bfd. (40)
C

Siﬁilarly, the inner product between the TM, aperture

mode and the TE,, waveguide (a) mode is trivial:
(&.ehys= oo ln-di=0 (41)

C
from boundary condition (34) for the TM, aperture mode
on C.

V. CIRCULAR IR1S

The circular iris of Fig. 1. is excited from the left by the
TE,; mode with unity amplitude. The physical problem is
symmetric in azimuthal angle ¢ and so the ¢ variation of
the excitation is preserved. Only higher order modes of
different radial or p variations are needed, i.e., only inclu-
sion of the TE;, and TM,,, r=1,2,---,modes in the
waveguide and in the circular aperture is required. Hence-
forth, the “1” in the modal indices is dropped for nota-
tional convenience. The normalized scalar potentials for
the natural modes of a circular waveguide of radius a with
a single azimuthal variation are given by [6, pp. 66, 69]

X1,
\I'rh=N,”J1( 1p)cos<;5 Ve N"Jl( p)smqb (42)
a

where the normalization factors are

/2 1 Ne 12 1
m Vx{F=1J(x{,) ’ 7 xy,J5(xy,)

(43)

with x;, and x{, the rth zeros of J, and Jy{. The trans-
verse electric field modal vectors of (31)—(32) are

N! ' x{, N/x{, {0
eh=p Jl( . p)sm¢+¢ ! Jl( : )cosqb (44)
o a a
Nre‘x r x rp . ANre x r !
g = —p—rt Jl’( ; )smqb—qs——.ll( p)cos¢ (45)
a o

and the cutoff wavenumbers are

x/! X
kh="" k=T (46)
a a

The inner product over the circular aperture S between the
TE,, waveguide (a) mode and the TE, aperture mode, as
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given by (37), is
x{,\2 .
(h 8ty = (52| NARE[Teos2edo
1mp xllkp
J J d
a2 a5 )p b
J/ ’ b
AT Jx2~ )(xl’,%—l)
1 Xim  Xig
. - , — = — (47
(xfk)z_(xlm)z a b (47)
b a
Similarly, (38) and (40) give ’
b
—e Ze 2'xlm Jl(xlm;) 1
<€m7ek>S_ a2 J2(-x1m) (ﬂ)z_(flﬂ)z ’
b a
Xim | X1k
— 4
—* (48)
b
(&, e)s = (49)

lmvxlllg -1 JZ('xlm)

The modal admittances of the waveguide (a) TE,, and
TM,,, modes are

Y(xa)*— xi7,
—, Ka>Xx{,
N nka
Im= . (50)
yxin —(ka)
——, Ka<X{,
jnka
Ka
—m——— Ka>X,;
2 m
y(xka)" = xi,
[
Y = jKa (51)
——, Kka<x,
2 m
nyxi, —(ka)
where k = wy/ue and 7 =1/p /¢ are the intrinsic wavenum-

ber and impedance, respectively, of the lossless dielectric.
The left and right side matrices Y and Y° are equal since
waveguides (a) and (b) are identical. Henceforth, the su-
perscript a is dropped from the admittance matrix and the
factor 2 is dropped from the forcing term (29). The three
types of symmetric matrix elements are

Ykhlh Z ym<em»ek>s<el» €m)s
m=1
o0

Z m<em’ek>S<el ° _m>S (52)

(53)

Yi= Z Yolem-eiys{ersen)s
m=1

= Y yes, enys(er. et s. (54)

m=1
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If all TM,,, and TE,,, modes except the TE11 mode are cut off in the waveguide, then (52) is

=G+ j( B+ Clt)
where the real part is

b\? b
4(5) ("a)z_Xflzxf%']fz(gxﬁ)x{/%xl/lz b 2 b 2Ty 1
Gl = {[x{%—(—xﬁ)][x{f—(—x{l) ]} ‘ (s6)
aead2(xf)(x{2 = 1)y (x{2 -1)(xf7 -1) a a

Using the principal asymptotic forms of the Bessel functions [21, pp. 364, 371]

2 vwm w v 1
J(x)~ ;COS(X—T_Z) x,,m~(m+———)7r

(55)

2 4
/(%) 2 v T r 1 57
4 —~— _ ___+_ - —
(x V -~ COS(X 3 4) X} m—l—2+4)77 (57)

a Kummer transform {22, p. 203] on the slowly converging series of the susceptive parts yields

a\? b b 3 7
—4(5) it | Xt X4 —(w)szl(;x{m) cos’ [ ( )— ]
B} =

— +_ J—
a\" 4] 4
2 _ 2 a 217 a 1 b
mway(x(E=1)(xiF 1) | m=2 T ) (X150 = )xfrzn_(gxfk) xl,rzn_(g'x{l) Z(Wm)B
. 2bm
1 [ =1 3y & M "
+ Y, —5 +cos ) Y a3
PP P 2a |, m
a
2baw
S
+sm( 5 ) 21 ma3 —1—s1n( ) (58)
m—
L | b (1)
n\/(xu D(xif =1) | m=1 x2, 72 (e )1, — (ka)’ é('7rm)3
a
[ 2bw 2bw
1 00 1 b 0 sm(Tm) bar 0 COS('—a—m)
+ Y ——cos( ) Y ——sin(——) Y —_—
23 moy M’ 2a ] u=y m? 2a] .2 m’
a
(59)
Similarly, the other aperture admittance matrix elements are accelerated as
b b 1 37
' 2 J2(—x ) cos{—vr(m—%—)—-——}
dxa 0 X1mY1 1m
=" X — T 4 :
mel J2(x1m)vx1m (:ca Xim— ( xlk)”x%m_(gxu)] ;(wm)
2bm 2bw
e B e
+ Y —5 - cos( ) Z ——sin Y ‘*+ (60)
2773_ m=1M = 2a m=1 m
a
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0
Ykhf = Z

Wxii=1 | m

1 © 1 bn
+ A Z —"3'—008(—)
277.3_ m=1M 2a

a

The asymptotic series above are of the form [23, p. 579]

®© sin(mx) w2x wx* x
ST T T 0<x<2

Z=1 m’ 6 4 12 xeem

®  cos(mx) x? 3y x* x¢
Bk ikal AP T W g S S

L =05 (nx 2) 288 86,400

0<x<2m (62)

where the Riemann zeta function is [21, p. 811]

® 1
Y — ={(3) =1.2020569. (63)

m=1

If the excitation is the TE, waveguide mode of unity
amplitude, then all TM current elements (29) are zero by
(41) and the TE current elements are

b b
22 (o) st xtini | 2t
b \? '
meay(x{7 —1)(x{Z -1) [xfi—(;xﬁ) ]Jl(xﬁ)
(64)

Using an aperture basis of M TE aperture modes and N
TM aperture modes, i.e.,

=

Eaper Z Vlhe_lh + Z Vle_le (65)
=1 I=1
for (25), the matrix equation (26) is
Thh  yhel| T Th
[ ymey ] = [I_ ] (66)
Yeh yee ?e 0
VI. REesuLTs

Fig. 3 is a computer-generated plot of the resultant
aperture electric field direction using ten TE and ten TM
aperture modes for an iris of size b/a = 0.5 at a frequency
corresponding to ka =2.5. This transverse electric field
pattern appears to be a perturbed TE,; mode. The next
largest TE aperture mode is the TE,, mode, which is 17.6
dB below the TE,; mode in this aperture. The largest TM
aperture mode is the TM,; mode, which is 9.6 dB below
the TE,; aperture mode. The resultant numerical ampli-
tudes of the higher order TE,, and TM,, aperture modes

1 Jf(xlm)‘/m[x%m_(sxu)z} _

decay approximately as n~1¢ and n~%%, respectively. The
asymptotic edge conditions {24, p. 4] at the aperture
boundary (p ~ b)

E,~(1-p/b)""*  E,~(1-p/b)"* (67)
indicate that the higher order TE,, and TM,, aperture
modes decay at least as fast as n 1> and n %5 respec-
tively, using the method of Carslaw [25, p. 274] where the
approximation (65) is recognized as a finite Fourier—Bessel
series representation of the actual aperture field. The sin-
gularity in the radial aperture electric field is responsible
for the nonuniform convergence and associated Gibb’s
phenomenon. Fig. 4. depicts the magnitude of the radial
electric field |E,| in the ¢ = 7/2 plane and of the azimuthal
electric field |E,| in the ¢ =0 plane, using the ten-TE and
ten-TM aperture mode approximation, corresponding to
Fig. 3. Fig. 5 uses an aperture basis of 20 TE and 20 TM
modes, which gives rise to a higher value of |E | at the
aperture edge.

The effect of the iris on the incident TE;; mode of the
waveguide can be characterized by an equivalent shunt
susceptance B, normalized with respect to the characteris-
tic wave admittance of the waveguide TE,; mode. The
numerical convergence of B for a 50-percent iris (b/a =
0.5) operated 36 percent above cutoff (ka = 2.5) is demon-
strated in Table 1. The variation of susceptance with iris
size and frequency is illustrated in Fig. 6. The value
ka =19 corresponds to a frequency slightly above TE;;
cutoff. Note that, for some values of ka, a resonant or
capacitive iris is possible. In contrast to the resonant iris
for rectangular waveguides [26, p. 170], the resonant iris
and the capacitive iris are possible only over a restricted
range of frequencies for the geometry of Fig. 1. The
resonant iris is, however, obtainable for all values of b/a.
Fig. 7 shows a comparison of the Galerkin results with the
Bethe small-hole theory results of Marcuvitz [6, p. 243]. A
logarithmic scale is used to permit a more precise compari-
son. The results agree only for apertures small compared
with wavelength; thus the results near cutoff agree for
relatively large b/a. As ka increases, the Bethe small-hole
results are accurate only for smaller relative b/a, as ex-
pected. Finally, although experimental results cannot be
obtained for the zero-thickness iris, recent experimental
results for very thin irises [18], [19] show excellent agree-
ment with the Galerkin results.
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TABLE I
CONVERGENCE OF EQUIVALENT SHUNT SUSCEPTANCE FOR
ka=25AND b/a=10.5
Humber of ‘Aperture Modes [ Normalized Shunt CPU Time on
R Susceptance, B Vax 8650 (sec)
M o(TE) N (TM)
1 1 -3.526 2.1
5 -2.894 2.6
m 10 -2.809 4.1
20 20 -2.767 20.4
40 40 -2.745 80.8
Fig. 3. Aperture electric field direction using 20 aperture modes (M =
N =10) with ka= 2.5 and b/a=0.5.
8
2'50 N L. 4 i
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3 .50 - |
i 8
L ]
= 7]
s IE, (p r/2) £
i 1,00+ plpm 15
£
g 7]
S
T -8
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-I2 ’ T v T
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Fig. 6. Shunt susceptance of circular iris in circular waveguide.
Fig. 4. Principal plane aperture electric field magnitude using a basis of
20 aperture modes.
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2
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0.00 T T T T -| r T T T
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Fig. 5. Principal plane aperture electric field magnitude using a basis of ~ Fig. 7. Shunt susceptance of circular iris in circular waveguide (loga-
40 aperture modes. rithmic plot): comparison with Bethe small-hole theory.
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The thin circular iris in circular waveguide has been
treated by a Galerkin moment method to obtain the aper-
ture field and shunt susceptance. A general formulation,
which is valid for arbitrary modes incident from left and
right, is obtained and then specialized to consider TE ;-
mode excitation. The convergence of the infinite series for
the aperture admittance matrix elements is accelerated by
_ the Kummer transform. Computations for shunt suscep-
tance indicate that the iris may be resonant or capacitive
over a restricted frequency range. Small aperture data
agree with Bethe small-hole theory.

CONCLUSIONS
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