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Galerkin Solution for the Thin Circular Iris
in a TE1l-Mode Circular Waveguide

ROBERT W. SCHARSTEIN, MEMBER, IEEE, AND ARLON T. ADAMS, SENIOR MEMBER, IEEE

,4Mruct —An integral equation for the transverse electric field in the

aperture of a concentric circular iris in a transverse plane of a circular

waveguide is approximately solved by Galerkh’s method. The aperture

field is represented by a finite sum of normal TE and TM circular
waveguide modes that fit the circular aperture. The numerical convergence

of the Galerkin solution is demonstrated via resultant aperture field

distributions and equivalent shunt susceptance for the case of dominant

TE, ~-mode excitation. The resultant aperture electric field distribution

closely resembles that of the TE ~~ aperture mode alone, except for edge

condition behavior at the edge of the iris. A resonant or capacitive iris is

possible over a restricted range of frequencies.

I. INTRODUCTION

T HE SPECIFIC APERTURE under consideration is

that of an infinitesimally thin circular iris of inner

radius b in a transverse plane of a circular waveguide of

radius a, as shown in Fig. 1. The circular iris is concentric

with the axis of the circular waveguide. The case of cir-

cularly symmetric excitation (TEO., TMO. modes) of this

circular iris or the related step change in waveguide diame-

ter problem is considered by many authors, for example

[1]-[5]. Marcuvitz [6, p. 243] gives the equivalent shunt

susceptance for TEII excitation of small apertures. Gubskii

et al. [7] formulate the Galerkin method for TEn.- and

TM,~n-mode incidence using a basis of weighted Jacobi

polynomials. Unfortunately, their results are given only for

TEO. and TM O,,excitation. The use of aperture waveguide

modes as a basis in the Galerkin procedure [8], [9] yields

the same set of linear equations as Wexler’s modal analysis

[10] and as the conservation of complex power technique

of Wade and MacPhie [11]. The Galerkin method also

yields the same equations as the Rayleigh–Ritz method,

but without having to start from an explicit variational

functional [12, p. 448]. In this paper, the effect of the

entire infinite set of modes in the circular waveguide is

approximated by series summation, in the manner of

[13] -[15]. The relative convergence problem [16], [17] and

less numerical accuracy can potentially arise when the
number of modes in the waveguide region is truncated, as

in the implementations of [9]–[11].
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The unknown in the boundary value problem is the

aperture electric field, from which the waveguide fields are

determined. The Galerkin method is formulated for the

case of the transverse junction between two perfectly con-

ducting cylindrical waveguides of general cross section.

The portion of the junction plane that extends into the

interior (the iris) is taken to be infinitesimally thin. The

formulation is implemented for the TEII excitation of the

circular iris in a circular waveguide, and several resultant

aperture electric field distributions are given. A family of

design curves for the variation of the equivalent shunt

susceptance as a function of iris size b/a and electrical

size of the circular waveguide Ku is also given, where

K = 2n/A is the wavenumber of the unbounded dielectric

in the waveguide.

II. DERIVATION OF ELECTRIC FIELD

INTEGRAL EQUATION

The portion of each waveguide cross section in the

transverse plane z = O that does not coincide with the

aperture S is shorted by a perfect electric conductor (Fig.

2). The aperture S is, excited by any number of modes

from waveguide (a) on the left (negative z) and is excited

by any number of modes from waveguide (b) on the right

(positive z). The cross sectional areas of the waveguides

are denoted by S. and S~. An iris of finite thickness is

treated as the simultaneous solution of two separated

junctions [18], [19]. Waveguides (a) and (b) can contain

two different, 10SSYdielectrics.
In the junction plane z = O, the transverse electric and

magnetic fields of regions (a) and (b) are expressed as

infinite summations of the normal transverse vector mode

functions of the corresponding waveguide

In waveguide (a), J(. is the unknown modal voltage, 1~ is
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Fig. 1. Thin circular mis in circular waveguide,

Fig. 2. Longitudinal view of transverse iris Junction between two gen-

eral cyhndrical waveguides.

the unknown modal current, Em is the known electric field

mode vector, and ~ ~, is the known magnetic field mode

vector of the m th mode. The corresponding quantities of

waveguide (b) are denoted by the caret (A) and modal

index n. The entire modal spectra of the waveguide fields

are needed at an abrupt discontinuity such as the junction,

and so the entire infinite summations are maintained and

not truncated.

It is convenient to define the inner product between two

transverse vectors A–and B over the surface X as the scalar

integral

(5)

where the asterisk denotes complex conjugate. The wave-

guide mode functions are orthonormalized in the sense

that their pairwise inner products are given by

(i,,:h)Sb= (i, ‘k)$,=hk. (6)

The electric and magnetic vector mode functions are sim-

ply related by a 90° transverse rotation [6, p. 4]

where 2 is th axial unit vector. The usual transmission line

equations for the m th waveguide (a) mode and the n th

waveguide (b) mode are

l.=ym[l’y-vy] (9)

fn=–jn [ Pni”c– fn”fl ] (11)

where the left-hand terms are total modal voltage and

current. Equations (8) and (9) relate total modal voltage V.,
and current 1~ to the incident and reflected modal volt-

ages V~‘“C and V~fl of waveguide (a) in the reference plane

z = O. The characteristic admittance’ of the m th mode of
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waveguide (a) is denoted by ym, which completely accounts

for the dielectric in the guide. Equations (10) and (11) give

the corresponding relations of waveguide (b).

The integral equation satisfied by the unknown tangen-

tial electric field in the aperture S is obtained by enforcing

continuity of the tangential magnetic field H across the

aperture,

(12)
m=l ~=]

Insertion of the electric quantities from (7)-(11) into the

above, taking the vector cross product of – 1 with both

sides, and addition of twice the incident terms to each side

of the resultant equation yields

/+?=1 n=l

‘2~yVinC- mmm em + 2 ~ jntn’ncjn on S. (13)

Continuity of the tang~ntial electric field is automatically

satisfied since VW,and V. are expressed as functions of the

common unknown aperture electric field in the aperture S:

(.Eaper
E.= f VW,FM=

on S

o
(14)

ml-l Onsa–s

{

q,,
~h = ~ pn;n =

on S

o
(15)

~=1 on S~ – S.

The inner product of (14) with the k th waveguide (a)

electric mode vector over the waveguide (a) cross section is

m

The orthogonality of the waveguide mode vectors allows

each waveguide total modal voltage to be calculated sep-

arately:
— A

‘m = ( ~aper > ‘m )S t = ( Zpe, ,2. )s . (17)

Insertion of (17) into (13) yields

= 2 f y.vpE. (F)+’2 5 -9J?%(F), ~ G S. (18)
m=l ~=1

This Fredhohn integral equation of the first kind is cast

into standard form

@w)- J&(F’) ds’= –22X IF”’(p) 7 pes

(19)

where the dyadic Green’s function is



108 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36. NO 1, JANUARY 1988

Some authors [8], [9] conceptually short the entire aperture

S with a perfect electric conductor and introduce the

equivalent magnetic surface current over S necessary to

bring the total tangential electric field back to its correct

value ~,Pe,. In such cases, the resultant integral equation

with the magnetic surface current as the unknown is

entirely equivalent to (19). The boundary condition is

~xEaper(iO=o, pec (21)

where t is the outward normal of the boundary curve C of

the aperture S. This boundary condition must be satisfied

according to (14) and (15) if the integral equation (19) is

valid in S.

III. FORMAL GALERKIN SOLUTION OF

INTEGRAL EQUATION

The linear integral operator (19) is

+ E~n:n(P)J&’:(F’)”~ap.r(F)ds’- (22)
~=1

The adjoint operator %“ satisfies [20, p. 315]

——
(9A, B). = (~, JZ?”@~ (23)

where A–and ~ are elements of the domain of JZ and JZ a,

respectively. Application of this definition and the Hilbert

space inner product (5) gives

(24)

The domains of ~ and ~a are identical and are the set

.Pe,(p) that are integrable with theof vector functions -E

waveguide vector modal functions over the aperture S and

result in convergent series of (22) and (24). Furthermore,

the class of legitimate aperture fields is limited to those

vector functions that satisfy the boundary condition (21).

The Galerkin technique is now applied in the manner of

[8] and [9]. The unknown aperture electric field is ap-

proximated by } linear combination of L independent

basis functions 21(D),

~aper(iO = i Z:/(P) (25)
1=1

where the unknowns are the complex aperture voltages il.

Inserting (25) into (18) and taking the inner product over

the aperture S of the residual error with the k th basis

function yields L linear equations. In matrix form these

linear equations are

(P+ Y’)F=P+I’ (26)

where the (k, 1)th elements of the L X L square aperture

admittance matrices are

Y:l = f -Ym(~.,>‘k)s(;l?‘,.)S (27)
~=1

A

Y/$/= f jn(:n,:k)s(:l,~n),$ (28)
~=1

and the k th elements of the L x 1 current excitation

column vectors are

I;= 2 ~ ymv~(~m J ‘k)S (29)
~=1

(30)
~=1

Note that Y~l and 1; are functions only of the geometry,

frequency, and excitation of the left side of the junction,

and similarly for Y~l and It on the right. This is due to the

inherent separation of the Green’s function (20). The cou-

pling between waveguides (a) and (b) occurs algebraically

as a simple matrix addition, with the solution obtained via

matrix inversion. The element Y~l can be thought of as the

mutual admittance between the k th and lth aperture

modes, where the coupling is via the infinite set of wave-

guide (a) modes.

IV. MODAL BASIS

If the aperture has the shape of a familiar waveguide

cross section, then the normal TE ( h-type) and TM ( e-type)

aperture waveguide modes constitute a candidate basis for

the tangential electric field in the aperture. The transverse

electric fields for the modes are expressed in terms of

scalar potential wave functions [6, p. 4]

TE modes: Zh = 1 x v,~h (31)

TM modes: 2’= – v,*’ (32)

which satisfy the boundary conditions

a+h
—=0

av

on C (Neumann or hard) (33)

‘J!’=0 on C (Dirichlet or soft). (34)

The inner product between the TE1 aperture mode and the

TEm waveguide (a) mode is

(:t1=L)s=Jfi[[~J*vt*71 ds-/p:*v?@fds

(35)

where the scalar potentials satisfy the Helmholtz equation

[W’+(W2]W=0. (36)

The two-dimensional divergence theorem, the directional

derivative of a scalar, and boundary condition (33) for the

aperture mode on C yield

(-h )2// -
(?’2:,)S= Kc, S~/’~;* ds. (37)

Similarly, the inner product over S of the TM aperture and
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wavcguide modes is
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given by (37), is

(38)

The inner product of the TEI aperture mode and the TM~Z

waveguide (a) mode is

which in view of vector identities and Stokes’ theorem

reduces to

(40)

Similarly, the inner product between the TM, aperture

mode and the TE~ waveguide (a) mode is trivial:

from boundary condition (34) for the TM~ aperture mode

on C.

V. CIRCULAR IRIS

The circular iris of Fig. 1. is excited from the left by the

TEII mode with unity amplitude. The physical problem is

symmetric in azimuthal angle I#J and so the + variation of

the excitation is preserved. Only higher order modes of

different radial or p variations are needed, i.e., only inclu-

sion of the TE1r and TM1,, r = 1,2,. . . ,modes in the

waveguide and in the circular aperture is required. Hence-

forth, the “l” in the modal indices is dropped for nota-

tional convenience. The normalized scalar potentials for

the natural modes of a circular waveguide of radius a with

a single azimuthal variation are given by [6, pp. 66, 69]

where the normalization factors are

(43)

with xl, and x[, the r th zeros of J1 and J(. The trans-

verse electric field modal vectors of (31)–(32) are

N: X;rp

(1
.N,hx~,

()%.P
2; = ;—Jl — sin@+@ —J{ — cos@ (44)

P a a a

N,exl,

()

xlrP . N:
.z:=-fi —J{ — sin~ – $—Jl

a a ()
y Cos+ (45)

P

and the cutoff wavenumbers are

X(, ‘lr~h=_ ~e=—
cl’ a

cr
a“

(46)

The inner product over the circular aperture S between the

TEn waveguide (a) mode and the TE~ aperture mode, as

[ h)

“(a’:(-)x~m 29
+#*. (47)

a

Similarly, (38) and (40) give
\

(48)

(49)

The modal admittances of the waveguide (a) TE~ and

TMW modes are

[

+’ ‘a’x’”n (Ku) –~lm
y;=

jKa
(51)

where K = cJ@ and q = ~ are the intrinsic wavenum-

ber and impedance, respectively, of the lossless dielectric.

The left and right side matrices ~ and ~b are equal since

waveguides (a) and (b) are identical. Henceforth, the su-

perscript a is dropped from the admittance matrix and the
factor 2 is dropped from the forcing term (29). The three

types of symmetric matrix elements are

m=l
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If all TM ~~ and TEl~ modes except the TE II mode are cut off in the waveguide, then (52) is

where the real part is

Using the principal asymptotic forms of the Bessel functions [21, pp. 364, 371]

JU(X)-&OS(X-;-;) X,ti-(nz+;-;).

J;(x) -~cos(x-;+;) X,m-im+:+:)m

(56)

(57)

a Kummer transform [22, p. 203] on the slowly converging series of the susceptive parts yields

a’

( 2bv \ ,1

3bw

()
+ sin — f cOs\=mJ _,_sin 7bT

2a ~=1 m’ (-)]]2a

—

cosz[:m(m++a
~(7rm)3

1

(58)

(59)

Similarly, the other aperture admittance matrix elements are accelerated as

J

(60)
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The asymptotic series above are of the form [23, p. 579]

~ sin(mx) 7r2x TX2 X3
x

m’ ‘T-T

0< X<271
}?1= 1 ‘E’

m cos(mx)

E
m’ ()

={(3)+; lnx-~ -~–&,
??1=1 >

O< X<277 (62)

where the Riemann zeta function is [21, p. 811]

5 4= ((3) ‘1.20205’9. (63)
~,=1 m

If the excitation is the TEI waveguide mode of unity

amplitude, then all TM current elements (29) are zero by

(41) and the TE current elements are

(64)

Using an aperture basis of M TE aperture modes and N

TM aperture modes, i.e.,

E,per= f ~ij + -f fi:; (65)
1=1 1=1

for (25), the matrix equation (26) is

(66)

VI, RESULTS

Fig. 3 is a computer-generated plot of the resultant

aperture electric field direction using ten TE and ten TM

aperture modes for an iris of size b/a = 0.5 at a frequency

corresponding to Ka = 2.5. This transverse electric field

pattern appears to be a perturbed TEII mode. The next

largest TE aperture mode is the TE12 mode, which is 17.6

dB below the TEII mode in this aperture. The largest TM

aperture mode is the TM II mode, which is 9.6 dB below

the TEII aperture mode. The resultant numerical ampli-

tudes of the higher order TEI. and TMI. aperture modes

A

decay approximately as n-16 and n ’06, respectively. The

asymptotic edge conditions [24, p. 4] at the aperture

boundary (p -b)

E, -(1 - p/’b)-1”2 E+ -(1 - p/b)l/2 (67)

indicate that the higher order TEI. and TMI. aperture

modes decay at least as fast as n – 15 and n‘05, respec-

tively, using the method of Carslaw [25, p. 274] where the

approximation (65) is recognized as a finite Fourier–Bessel

series representation of the actual aperture field. The sin-

gularity in the radial aperture electric field is responsible

for the nonuniform ‘convergence and associated Gibb’s

phenomenon. Fig. 4. depicts the magnitude of the radial

electric field IEPI in the @= n/2 plane and of the azimuthal

electric field IEd I in the ~ = O plane, using the ten-TE and

ten-TM aperture mode approximation, corresponding to

Fig. 3. Fig. 5 uses an aperture basis of 20 TE and 20 TM

modes, which gives rise to a higher value of [EPI at the

aperture edge.

The effect of the iris on the incident TEII mode of the

waveguide can be characterized by an equivalent shunt

susceptance B, normalized with respect to the characteris-

tic wave admittance of the waveguide TEII mode. The

numerical convergence of B for a 50-percent iris (b/a =

0.5) operated 36 percent above cutoff (Ka = 2.5) is demon-

strated in Table I. The variation of susceptance with iris

size and frequency is illustrated in Fig. 6. The value

Ka =1.9 corresponds to a frequency slightly above TEII

cutoff. Note that, for some values of Ku, a resonant or

capacitive iris is possible. In contrast to the resonant iris

for rectangular waveguides [26, p. 170], the resonant iris

and the capacitive iris are possible only over a restricted

range of frequencies for the geometry of Fig. 1. The

resonant iris is, however, obtainable for all values of b/a.

Fig. 7 shows a comparison of the Galerkin results with the

Bethe small-hole theory results of Marcuvitz [6, p. 243]. A

logarithmic scale is used to permit a more precise compari-

son. The results agree only for apertures small compared

with wavelength; thus the results near cutoff agree for

relatively large b/a. As Ku increases, the Bethe small-hole

results are accurate only for smaller relative b/a, as ex-

pected. Finally, although experimental results cannot be

obtained for the zero-thickness iris, recent experimental

results for very thin irises [18], [19] show excellent agree-

ment with the Galerkin results.
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Fig. 3. Aperture electric field direction using 20 aperture modes (M=

N = 10) with KU= 2.5 and b/a= 0.5.
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Fig. 4. Principal plane aperture electric field magnitude using a basis of
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Fig. 5. Principal plane aperture electric field magnitude using a basis of

40 aperture modes.

TABLE I
CONVERGENCE OF EQUIVALENT SHUNT SUSCEPTANCE FOR

KU = 2.5 AND b/a = ().5
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20 -2.767
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0.0 0.2 0.4 0.6 0.0
Normalized Iris Radius, b/a

)

Fig. 6. Shunt susceptartce of circular iris in circular waveguide,

~
g

I

o

-1

1
\

— Galerkin
––– Bethe - hole

I Il.
0.05 0:15 0.25 0.35 0.45 0.

Normalized Iris Radius, b/a
,5

Fig. 7. Shunt susceptance of circular iris in circular waveguide (loga-

ri thmic plot): comparison with Be the small-hole theory.
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VII. CONCLUSIONS

The thin circular iris in circular waveguide has been

treated by a Galerkin moment method to obtain the aper-

ture field and shunt susceptance. A general formulation,

which is valid for arbitrary modes incident from left and

right, is obtained and then specialized to consider TEll-

mode excitation. The convergence of the infinite series for

the aperture admittance matrix elements is accelerated by

the Kummer transform. Computations for shunt suscep-

tance indicate that the iris may be resonant or capacitive

over a restricted frequency range. Small aperture data

agree with Bethe small-hole theory.
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